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Resolving the topologyof encirclingmultiple
exceptional points

Chitres Guria1, Qi Zhong2,3, Sahin Kaya Ozdemir 3, Yogesh S. S. Patil 1,
Ramy El-Ganainy 2,4 & Jack Gwynne Emmet Harris 1,5,6

Non-Hermiticity has emerged as a new paradigm for controlling coupled-
mode systems in ways that cannot be achieved with conventional techniques.
One aspect of this control that has received considerable attention recently is
the encircling of exceptional points (EPs). To date, most work has focused on
systems consistingof twomodes that are tunedby twocontrol parameters and
have isolated EPs. While these systems exhibit exotic features related to EP
encircling, it has been shown that richer behavior occurs in systems withmore
than two modes. Such systems can be tuned by more than two control para-
meters, and contain EPs that form a knot-like structure. Control loops that
encircle this structure cause the system’s eigenvalues to trace out non-
commutative braids. Here we consider a hybrid scenario: a three-mode system
with just two control parameters. We describe the relationship between con-
trol loops and their topology in the full and two-dimensional parameter space.
We demonstrate this relationship experimentally using a three-mode
mechanical system in which the control parameters are provided by opto-
mechanical interaction with a high-finesse optical cavity.

Modeling physical systems as collections of coupled oscillators is an
important strategy in many disciplines, including quantum field the-
ory, condensed matter, optics, acoustics, soft matter, and biology.
Classical linear coupled-oscillatormodels (COMs) are described by the
system of equations _x= � iHx where the complex N-vector x repre-
sents the phase space coordinates ofNoscillators, and theN ×Nmatrix
H encodes the oscillators’ properties. One important feature of any
COM is its spectrum of resonance frequencies λ, which is the (unor-
dered) set of the eigenvalues of H. In many applications, it is desirable
to tune λ by varying parameters that appear in H. This tuning may be
static, in the sense of setting the parameters in order to fix specific
resonances (e.g., when using the COM as a transducer for external
signals with known frequencies). Alternatively, the tuning may be
dynamical in the sense of being carried out in real time to manipulate
excitations within the COM (as in adiabatic control schemes). In both
cases, it is important tounderstandhow λdependsuponparameters in

H. While the details of this dependence will vary from one system to
another, it is known to possess a number of generic features.

One such feature that has attracted considerable attention
recently is the topological structure that emerges when H is non-
Hermitian1–6. This structure is manifested in the evolution of λ when
the parameters ofH are varied around a loop7–13. The simplest example
occurs in a system of N = 2 oscillators with two control parameters (b1
and b2) chosen so that the 2D space they span contains a single point at
which the eigenvalues are degenerate (for generic b1 and b2 this
degeneracy will be an exceptional point (EP)14,15). If b = (b1, b2) is varied
smoothly around a loop (which does not intersect the EP), the evolu-
tionof λwill result in a permutationof the twoeigenvalues if andonly if
the loop’s winding number around the EP is odd.

For N > 2, a generic 2D control space (which we refer to as B) will
contain isolated twofold EPs that correspond to degeneracies between
various mode pairs14,15. In such systems, the relationship between a
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control loop, the EPs, and the resulting eigenvalue permutation is less
intuitive than for N = 2. In particular, there is no simple correspon-
dence between a loop’s topology (more precisely, its homotopy class
in �B, defined as B with the EPs removed) and the resulting eigenvalue
permutation. For example, loops that are homotopy equivalent in �B all
give the same permutation, but homotopy inequivalent loops do not
necessarily give distinct permutations.

As shown in ref. 16, the permutation associated with a given loop
can be calculated by introducing into B branch cuts (BCs) for λ and
tracking the manner in which the loop crosses these BCs, and the
resulting eigenvalue permutation is less intuitive than forN = 216,17. This
approach has the advantage of being straightforward to visualize, as it
only involves quantities that are defined in the 2D space B. It is also
relevant to the many systems that in practice offer just two control
parameters. However, relying on the introduction of BCs can obscure
the topological relationship between control loops and EPs.

A different approach is to view the control loop in the space that is
spanned by all the coefficients of pH, the characteristic polynomial of
H18. These coefficients are simple functions of the elements of H, and
they provide a smooth parametrization of the eigenvalue spectra19. If
we take H to be traceless (see “Methods”), then pH has N − 1 coeffi-
cients. As these are complex, the space they span (which we denote as
LN) is isomorphic to the Euclidean space R2ðN�1Þ.

Within LN , the degeneracies comprise a subspace (which we
denote as VN) having two dimensions fewer than LN . Intuitively, this
follows because degeneracy corresponds to λi = λj (i.e., equality of two
eigenvalues), which can be regarded as two real constraints. For a loop
C that does not intersect VN (i.e., C lies entirely in the space of non-
degenerate spectra GN � LN � VN), it is straightforward to show that
the resulting evolution of λ is a braid ofN strands,where each strand of
the braid represents the evolution of one of the eigenvalues of H.
Furthermore, there is a one-to-one correspondence between the
topology of the control loop in GN and the topology of the resulting
eigenvalue braid (formally, the correspondence is between homotopy
equivalence classes of based loops in GN and isotopy equivalence
classes of braids)18,20,21.

The high dimension of these spaces and the nontrivial geometry
of VN (for N > 2) make it challenging to visualize this approach. How-
ever, it has the advantage of giving the topological character of the
evolution of λ directly in terms of the manner in which C encircles
the EPs.

The rich behavior exhibited by COMs with N > 2 has been shown
to offer considerable promise for a range of applications, including
enhanced sensing, topological control, and line-narrowing in
lasers22–36. As a result, it is important to develop an intuitive description
of how λ can be tuned in such systems. Here, we describe experiments
that use a system of N = 3 mechanical oscillators to elucidate the
connections between viewing λ using a 2D control space (B) and using
its full control space (L3). Specifically, we measure λ in various B
throughout L3, and use this data to track the evolution of λ around
various loops in each �B. This data also provides the structure of G3 and
V3, and so allows us to illustrate a number of qualitative features in the
topological behavior of λ. These measurements demonstrate that
loops which encircle different EPs in a given �B produce the same
permutation if they are homotopy equivalent in G3. They also
demonstrate that loops can encircle the same EPs in a given �B and
produce different permutations if they are homotopy inequivalent in
G3. Lastly, they demonstrate the role of the loops’ basepoints in
determining their homotopy equivalence.

Results
Three-mode systems
To illustrate the view of control loops and EPs provided by the full
control space LN , we give an explicit description of the case N = 3. The
characteristic polynomial of any 3 × 3 tracelessmatrix can bewritten as

pH = λ3 − yλ − x where the complex numbers x and y are the control
parameters. The space they span isL3, which is isomorphic toR4. This
means that V3, the subspace consisting of the degeneracies, will be
two-dimensional (as degeneracies comprise a subspacewith two fewer
dimensions than the full control space).

To find the structure of V3, we use the fact that a polynomial’s
roots aredegenerate if andonly if its discriminant vanishes. ForpH, this
corresponds to the condition

4y3 = 27x2 ð1Þ

so that the solutions of Eq. (1) are the coordinates of the degeneracies
in L3. The trivial solution x = y =0 (corresponding to the origin of L3)
corresponds to a three-fold degeneracy (which we denote as EP3), with
λ = {0, 0, 0}. This is theonly EP3 inL3 (sinceTr½H�=0), so the remainder
of V3 must consist of twofold degeneracies (which we denote as EP2 or
simply EP). These can be found by first considering a hypersphere Sr

with radius r and centered at the origin (i.e., it is defined by
∣x∣2 + ∣ y∣2 = r2). It is straightforward to show that this constraint together
with Eq. (1) fixes ∣x∣ and ∣y∣ while also requiring that 2 argðxÞ=3 argðyÞ
(here arg denotes the complex argument). This defines a (2, 3) torus
knot K (also known as a trefoil knot) within Sr

37. Since this reasoning
holds for any r >0, the full space of degeneracies V3 can be viewed as
the result of “extruding” K in the radial direction (i.e., so that it
collapses to a point at the origin). The resulting two-dimensional
surface is known as the topological cone of the trefoil knot, denoted
as CK.

In addition to giving the structure of V3, this reasoning also pro-
vides the structure of G3 (the non-degenerate space in which control
loops are assumed to lie) as this is simply the complement of V3 in L3.
Lastly, the one-to-one correspondence between loops in G3 and braids
of the three eigenvalues reflects the fact that the fundamental group of
G3 is B3, the Artin braid group38 on three strands.

This structure is illustrated in Fig. 1a, which shows a stereographic
projection of the unit hypersphere S1, along with the locations of the
EPs it contains. The latter can be seen to form a trefoil knot K (yellow
curve). Also shown in Fig. 1a is an example of a 2D subspace B (gray
plane). This particular choice forB intersectsK atfive locations.Oneof
the intersections is tangential (the one at the greatest Y value), while
the other four are transverse39. Figure 1b depicts B and the five EPs
within it.

To illustrate the specific problem that we consider in the experi-
ments described below, Fig. 1a, b show three control loops. All three
loops lie in B and share a common basepoint. Viewed within B (as in
Fig. 1b), the loops enclose zero, one, and two EPs, and so are not
homotopic in �B. However, it is straightforward to see from Fig. 1a that
they are homotopic in G3. As a result, these three loops all result in the
same eigenvalue braid. In fact each of these loops is contractible, and
so results in the identity braid (and hence the identity permutation).
This agrees with the explicit calculation of λ around each loop, shown
in Fig. 1c. A detailed description of Fig. 1 is in “Methods”.

Experimental setup
To demonstrate these features experimentally, we used a COM con-
sisting of three vibrational modes of a 1 mm× 1 mm× 50 nm Si3N4

membrane. The dynamical matrix H for these modes is controlled by
placing the membrane inside a high-finesse optical cavity. When the
cavity is driven by one or more lasers, light inside the cavity exerts
radiation pressure on the membrane, altering H via the well-known
dynamical back-action (DBA) effect of cavity optomechanics40–42.

Figure 2a shows a schematic of the experiment. The optical cavity
is addressedby two lasers, labeled control andprobe. The control laser
is split into three tones (by an acousto-opticmodulator (AOM)), which
are used to tuneH. For each choice ofH, themembrane’s spectrum λ is
determined from its frequency-dependent mechanical susceptibility
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χð~ωÞ, which is measured using the probe laser. A complete description
of the setup is given in refs. 18,43.

Figure 2b shows the detuning of the three control tones relative to
the cavity resonance. The control tone indexed by k∈ {1, 2, 3} is
detuned by ∼ � ~ωð0Þ

k where the elements of f~ω1
ð0Þ, ~ω2

ð0Þ, ~ω3
ð0Þg are the

bare resonance frequencies of themembranemodes in the absence of
DBA. For this experiment, we vary the control tones’ common detun-
ing δ (defined in Fig. 2b) and their powers P1, P2, and P3. The relative
detunings between the control tones are fixed, and define a rotating
frame R in which the three modes are nearly degenerate for
P1 = P2 = P3 = 0. As shown in ref. 18, the experimental parameters
Ψ = (δ, P1, P2, P3) provide sufficient control to span L3 in the neigh-
borhood of the EP3, and in particular to measure the structure of V3

and G3.
Figure 2c shows a representative measurement of χð~ωÞ. The drive

is produced by modulating the probe beam’s intensity at a frequency
~ωAM. The resulting heterodyne signal ~V , which is proportional to the
membrane’s motion, is recorded for values of ~ωAM in a window cen-
tered on ~ωk

ð0Þ for each k. Figure 2c shows j~V j in the left panel and a
parametric plot of ~V in the right panel for each k. This data is fit to the
expected form of χð~ωÞ using λ as a fit parameter18. Throughout this
paper, λ is determined by data and fits such as those shown in Fig-
ure 2c, and its values are given in the frame R. Quantities with a tilde
are given in the lab frame, and without a tilde in the rotating frameR.
The device parameters are given in Table 1.

Measurements of braids and permutations
The setup described above was used to measure λ at ~ 3 × 104 values of
Ψ18. A small subset of this data was taken for values of Ψ ranging
throughout L3 and was used to determine the location of the EP3. The
rest of the data was taken for values of Ψ on a hypersurface S sur-
rounding EP3. These measurements are described in detail in ref. 18.

Figure 3a shows part of this data. At each value ofΨ themeasured λwas
converted toD = ðλ1 � λ2Þ2ðλ2 � λ3Þ2ðλ3 � λ1Þ2, which is the discriminant
of pH. The color scale in Figure 3a shows argðDÞ. The yellow circles show
the two locations identified in this data by a vortex-finding algorithm18.
As described in ref. 18, a vortex in argðDÞ is one signature of an EP2.
These locations agree well with those returned by three other algo-
rithmic means of identifying EP2s from the data18. Figure 3b displays a
stereographic projection of S in which the EPs identified via vortices in
argðDÞ are depicted by the yellow spline curve (see “Methods”).

To examine the effect of control loops (viewed in either the full
control space or in a 2D subspace) we take the region Bð1Þ shown
in Fig. 3a as our first example of a 2D control space, and consider the
two loops shown as green and blue in Fig. 3a. These loops share a
common basepoint, and are clearly not homotopic in �Bð1Þ (defined as
Bð1Þ without the two EPs). However, Fig. 3b, c show that these loops are
homotopic in G3 and that each loop is contractible. Measurements of λ
at several positions along each loop are shown in Fig. 3d, e, and
demonstrate that these loops produce isotopic braids (in this case, the
identity braid), as would be expected from Fig. 3b, c. This illustrates one
of the striking features from Fig. 1: the braid traced out by λ is deter-
mined by the loop’s homotopy class in GN , and not by its homotopy
class in any particular �B.

Another important feature of 2D control spaces is that control
loopsmayencircle the same EPs and yet give rise to distinct eigenvalue
braids16. This scenario is demonstrated in Fig. 4, which shows the 2D
control space Bð2Þ. Here, the two loops (red and blue) share a common
basepoint and encircle the same EPs. Nevertheless, they are not
homotopic in either �Bð2Þ or G3 (Fig. 4b, c) and the braids they produce
(Fig. 4d, e) are not isotopic.

Next, we investigate the role of the loops’ basepoints in deter-
mining their homotopy equivalence. Todo soweuse the data shown in
Fig. 5, which depicts a third 2D control spaceBð3Þ, alongwith two loops.

Fig. 1 | Controlling the spectrum of a three-mode system. a The full space of
control parameters. The EPs are shown in yellow, and form a trefoil knot K. The
coordinates X, Y, Z are defined in “Methods”. The gray plane shows an example of a
2D subspace (B). The yellow discs are the five intersections of B with K. The red,
green, and blue loops all lie in B and have a common basepoint (black circle).b The

control plane B, showing the five EPs it contains (yellow circles) and the three
control loops. The coordinate along each loop is ρ. For each loop, the basepoint
(black circle) corresponds toρ =0 and ρ = 1. cThe eigenvalue spectrum λ calculated
as a function of ρ along each of the loops. A detailed description of these plots is
“Methods”.
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These loops are homotopic if their basepoint is the white circle;
however, they are non-homotopic if their basepoint is the black circle.
This also holds if the loops are viewed in L3, as shown in Fig. 5b, c. As a
result, the loops generate isotopic braids when based at the white
point (Fig. 5d, e) and non-isotopic braidswhen based at the black point
(Fig. 5f, g).

Figure 5 illustrates another feature that is absent for N = 2 but
generic for N > 2: the noncommutativity of braids. Specifically, the
braids in Fig. 5f, g do not commute with each other: concatenating the
braid in Fig. 5f and the braid in Fig. 5g results in the leftmost eigenvalue

(as it appears in the figure) being transported to the middle one, while
reversing the concatenation causes the leftmost eigenvalue to be
transported to the rightmost one.

Discussion
In conclusion, we have considered two complementary ways of
describing the topological features that arise when the spectrum of a
non-Hermitian system is tuned. The first describes tuning with two
control parameters16, while the second considers all of the system’s
control parameters18. The former offers ease of visualization and cor-
responds to many actual experiments but may mask the features that
determine which control loops are topologically distinct from each
other. The latter provides a clear picture of topological equivalence
but is more challenging to visualize.

We have illustrated both of these approaches experimentally,
using a three-mode mechanical system that is tuned optomechani-
cally. However, we emphasize that the results presented here are
generic and can be applied to non-Hermitian systems realized in any
physical platform.

These results help to elucidate the complex topology of non-
Hermitian systems possessing many degrees of freedom. This
insight may aid in efforts to realize new types of mode switching via
dynamical encircling of EPs44–47. It may also help to clarify which
aspects of a linear system’s topology remain relevant to its behavior
in nonlinear regimes48,49. Lastly, it may find application in the fields
of non-Hermitian band structure50–56 and complex scattering
phenomena55,57,58, where closely related concepts arise.

Methods
Tracelessness of H
Throughout this paper,we takeH to be traceless. This choice simplifies
the analysis, and does not alter the generality of the conclusions
presented here.

Fig. 2 | Experimental setup. a A Si3N4 membrane (red) is placed between the
mirrors of a Fabry-Pérot cavity (white) in a cryostat (blue). Three of themembrane’s
modes (pinkbox) are tunedusing three tonesgenerated from the “control” laser via
an AOM (cAOM). The membrane is driven by modulating the “probe” laser’s
intensity (via the amplitude modulation port (AM-in) of the source that drives a
second AOM (pAOM)). The probe laser also provides a local oscillator (LO) which
generates a signal ~V that is proportional to the membrane’s displacement and is
monitored via a lock-in amplifier (LIA).bThe detuningsΔ of the three control tones
(with respect to the cavity’s resonance). Dark blue: the magnitude of the cavity’s

optical susceptibility. The parameter η = −2π × 100Hz is chosen to provide an
optimal rotating frame18. c A measurement of the membrane’s mechanical sus-
ceptibility for Ψ = (2π × 46 kHz, 109.4μW, 376.8μW, 77.0μW). For each frequency
range, the left panel shows j~V ð~ωAMÞj and the right panel shows a parametric plot of
~V . Each data point is colored according to the value of ~ωAM. The black lines are a
global fit to all the data shown. This fit returns the system’s eigenvalues
λ = 2π × {49.670 − i 84.977, 57.636 − i 29.834, 112.222− i 26.325}Hz in the rotating
frameR. Themagnitudeof eachmode’s contribution (as determined from thefit) is
shown as the orange, green, and light blue curves in the left-hand column.

Table 1 | Parameters of mechanical and optical modes,
optomechanical coupling, and laser source used for the
experiment

Parameter Value
~ω1

ð0Þ
=2π 352243.3 ± 0.1 Hz

~ω2
ð0Þ

=2π 557216.8 ± 0.1 Hz

~ω3
ð0Þ

=2π 704836.7 ± 0.1 Hz

~γ1
ð0Þ

=2π 4.4 ± 0.1 Hz

~γ2
ð0Þ

=2π 3.8 ± 0.1 Hz

~γ3
ð0Þ

=2π 3.6 ± 0.1Hz

κ/2π 173.8 kHz

κin/2π 46.4 kHz

g1/2π 0.1979Hz

g2/2π 0.3442Hz

g3/2π 0.3092Hz

λ 1064nm

~ωð0Þ
i : the bare resonance frequency of the ith mechanical mode (i.e., in the absence of any

optomechanical effects). ~γð0Þi : the bare energy damping rate of the ith mechanical mode. κ: the
optical cavity linewidth. κin: the optical cavity input coupling rate. gi: the optomechanical cou-
pling rate between the optical cavity and the ith mechanical mode. λ: the laser wavelength.
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Intuitively, this can be understood by considering a control loop
parameterized by 0 ≤ ρ ≤ 1 for which H(ρ) is not assumed to be trace-
less (and in which trðHðρÞÞ may vary with ρ). The eigenvalues of H,
viewed as a function of ρ, will trace out a braid of N strands18,20,21. For
each value of ρ along the braid, trðHðρÞÞ sets the average of the N
eigenvalues. If for each value ofρwe remove the traceofH (i.e., replace
H(ρ) with HðρÞ � ItrðHðρÞÞ where I is the identity matrix), this amounts
to translating (in the complex plane) the eigenvalue spectrum as a

whole. Even if this translation is different for each value of ρ, the fact
that it is applied to the spectrum as a wholemeans that the topological
character of the braid is unchanged.

More formally, shifting the center of the eigenvalue braid by an
amount that varies with ρ gives a family of homeomorphisms that
defines an ambient isotopy (the ambient space of the braids is C× I,
where I is the unit interval). As a result, it leaves the braid’s isotopy
equivalence class unchanged59.

Fig. 3 | Equivalent eigenvaluebraids fromdifferent loops. aThe 2Dcontrol space
Bð1Þ. Color scale: argðDÞ. Yellow circles: vortices in argðDÞ, which correspond to EPs.
Green and blue curves: control loops. Black circle: the loops' basepoint. A view of
Bð1Þ in L3 is in Supplementary Fig. S1. b Stereographic projection of the hypersur-
face S. The axes X, Y, Z are defined inMethods. Yellowcurve: themeasured EPs. The
black circle, green curve, and yellow circles are as in (a). The control loops consist
of straight segments in (a) but appear curved in (b) owing to the stereographic

projection. Inset: a simplified cartoon of the relationship between the EPs and the
control loop. c The same as in (b), but for the blue control loop. d The eigenvalue
spectrum λ as a function of position along the green control loop. ρ indexes the
measurements of λ along the loop. e As in (d), but for the blue control loop.
Although the loops are not homotopic in �Bð1Þ, they are homotopic in G3, and so
produce isotopic braids.
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Detailed description of Fig. 1
In this section, we provide a detailed description of Fig. 1, which
illustrates the space spanned by the coefficients of pH (the character-
istic polynomial of the 3 × 3 dynamical matrix H). It also shows the
structure of the degeneracies within this space, along with one parti-
cular choice of a 2D subspace.

The characteristic polynomial of a matrix is monic, meaning that
the coefficient of its highest-order term is unity. The coefficient of the
next-highest-order term is simply the trace of thematrix. In COMs, the

trace of the dynamical matrix can be trivially absorbed into the defi-
nitions of the oscillators’ coordinates, so we take trðHÞ=0 throughout
this paper without loss of generality. As a result, themost general form
for pH is λ3 − yλ − x, where the complex numbers x and y fully specify
the eigenvalue spectrum. Degeneracy between roots of pH corre-
sponds to the condition DpH

=0, where DpH
=4y3 � 27x2 is known as

the discriminant of pH.
The space spanned by x and y (denoted L3) can be viewed as

R4 and can be labeled with the Cartesian coordinates

Fig. 4 | Different braids by encircling the same EPs. a The 2D control space Bð2Þ.
Color scale: argðDÞ. Yellow circles: vortices in argðDÞ corresponding to EPs. Blue and
red curves: control loops. Black circle: the loops' basepoint. A view ofBð2Þ inL3 is in
Supplementary Fig. S1.b Stereographicprojection ofS. Yellow curve: themeasured
EPs. The black circle, blue curve, and yellow circles are as in (a). Inset: a simplified
cartoon of the relationship between the EPs and the control loop. c The same as in

(b), but for the red control loop. d The eigenvalue spectrum λ as a function of
position along the blue control loop. ρ indexes the measurements of λ along the
loop. eAs in (d), but for the red control loop. The braids produced by the two loops
are not isotopic (and do not produce the same permutation) even though they
encircle the same EPs in Bð2Þ.
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ðReðxÞ,ImðxÞ,ReðyÞ,ImðyÞÞ. As described in the main paper (as well as in
refs. 18,37,60), any hypersphere centered at the origin ofL3 (i.e., at the
point (0, 0, 0, 0)) contains twofold degeneracies (EP2s). These form a
closed curve that is a trefoil knot.

Figure 1a shows this structure explicitly. It is a stereographic
projection of the unit hypersphereS1 (definedby ∣x∣2 + ∣y∣2 = 1) ontoR3.
In particular, this projection uses the point ( − 1, 0, 0, 0) as its pole, so
that the coordinates X, Y, Z of Fig. 1 are defined via:

ReðxÞ = 1� X2 � Y 2 � Z2

1 +X2 + Y 2 +Z2

ImðxÞ = 2Z

1 +X2 + Y 2 +Z2

Reð yÞ = 2X

1 +X2 + Y 2 +Z2

Imð yÞ = 2Y

1 +X2 + Y 2 +Z2

ð2Þ

The yellow curve in Fig. 1 shows the locations of the degeneracies
within S1. It is determined by the two constraints ∣x∣2 + ∣ y∣2 = 1 (which
defines S1) and 4y3 − 27x2 = 0 (which defines the vanishing of DpH

). It
can be seen to form the trefoil knot K.

As described in themain text, there aremany settings inwhich it is
useful to consider a 2D subspace of L3. The choice of such a subspace
(denoted B) may be motivated by which pair of parameters are most
readily accessible in a particular device. There are infinitely many
possible choices for B, so it is helpful to distinguish between features
that are generic (i.e., whichwould result for nearly any choice ofB) and
features that only result for finely tuned choices of B. For example, a
generic B will have a finite (possibly zero) number of transverse
intersections withK, while only fine-tuned choices for B will have non-
transverse intersections with K39.

Figure 1a shows a particular B that illustrates both generic and
nongeneric features. This B is defined by Y +m(Z − Z0) = 0, with
m= tanð�17π=36Þ and Z0 ≈0.284. This B happens to be a plane in the

coordinates X, Y, Z. Its flatness (in these coordinates) is a nongeneric
feature, but is chosen to simplify the visualization and does not impact
the discussion. This particular B has four transverse intersections with
K. As mentioned above, such intersections are generic, though the
specific number depends on the choice of B39. It also has one non-
transverse intersection, which can be viewed as the result of fine-
tuning the parameters m and Z0. This nongeneric intersection is
included for illustrative purposes, but is not central to this discussion.

Also shown in Fig. 1a are three control loops, all of which lie in B
and share a common basepoint. Each loop is described by:

X ðρÞ = Xb + r½cosðϕcÞ � cosð2πρ+ϕcÞ�
Y ðρÞ = Yb + r½sinðϕcÞ � sinð2πρ+ϕcÞ�
Z ðρÞ = Z0 � Y ðρÞ=m

ð3Þ

where ρ 2 0, 1½ � parameterizes position along a circular path of radius r
that starts and stops at the basepoint Xb,Yb,Z0 � Yb=m

� �
. The angle

ϕc sets the orientation of the circle’s center with respect to the
basepoint.

The three loops in Fig. 1a all have their basepoint at Xb=0.25,
Yb=0.3, radii r= {0.325, 0.6, 1.1}, and orientations ϕc = �7π=18,

�

15π=36,� 13π=36g (for the green, red and blue loop, respectively).
Figure 1b shows the plane B (i.e., the space spanned by X and Y

with Z = Z0 − Y/m), along with the five intersections between B and K
and the three loops just described. These loops can be seen to enclose
zero, one, or two of the five intersections between B and K.

To plot the eigenvalue braids that result from each of these con-
trol loops, we first use Eq. (2) to convert the loop coordinates from
(X, Y, Z) as given in Eq. (3) to the coordinates ðReðxÞ,ImðxÞ,ReðyÞ,ImðyÞÞ.
We then find the roots of pH numerically for 101 values of ρ ranging
from 0 to 1. For each value of ρ, we show the three roots (which
comprise the eigenspectrum λofH) in the complexplane (indicatedby
ReðλÞ and ImðλÞ in Fig. 1c). Their evolution as a function of ρ is shown in
Fig. 1c by stacking a copy of the complex plane for each ρ. The black

Fig. 5 | Measuring the basepoint dependence of homotopy equivalence. a The
2D control space Bð3Þ. Color scale: argðDÞ. Yellow circles: vortices in argðDÞ corre-
sponding to EPs. Blue and red curves: control loops. Black and white circles: two
choices for the loops' basepoint. A view of Bð3Þ in L3 is in Supplementary Fig. S1.
b Stereographic projection of S. Yellow curve: the measured EPs. The black circle,
white circle, red curve, and yellow circles are as in (a). Inset: a simplified cartoon of
the relationship between the EPs, the control loop, and the basepoints. c As in (b),

but for the blue control loop.d The eigenvalue spectrum λ as a function of position
along the red control loop, using the white basepoint. ρ indexes themeasurements
of λ along the loop. e As in (d), but for the blue control loop. f As in (d), but for the
black basepoint. gAs in (e), but for the black basepoint. When the two loops shown
in (a) are based at the white point, they are homotopic and so produce isotopic
braids; however, the same loops based at the black point are not homotopic and
produce non-isotopic braids.
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crosses highlight λ at ρ = 0 (the bottom of each plot), which by con-
struction is identical to λ at ρ = 1 (the top of each plot).

Representing the measured knot of degeneracies
The features shown in Fig. 1 are calculated using a general 3-mode
COM,while Figs. 3b, c, 4b, c, and 5b, c show the corresponding features
measured in the optomechanical system described in the main text
(and in greater detail in ref. 18). In the experiments described here,H is
tuned via the parameters (δ, P1, P2, P3) defined in the main text.
As described in ref. 18, these parameters span L3 in the neighborhood
of EP3. Specifically, the Jacobian relating (δ, P1, P2, P3) to
ðReðxÞ,ImðxÞ,ReðyÞ,ImðyÞÞ has non-zero determinant.

Degeneracies ofHwere located by fixing two of these parameters
(for example, δ and P1) and densely rastering the other two (in this
example, P2 and P3). At each point in this “sheet”, the mechanical
susceptibility χð~ωÞwasmeasured for threewindowsof ~ω centered near
~ωð0Þ
1 , ~ωð0Þ

2 , and ~ωð0Þ
3 . A typical example of such a measurement is shown

in Fig. 2c. These data are fit to the expected form of the mechanical
susceptibility, which is the sum of nine Lorentzians.

The fit returns 13 complex fit parameters. First, there are the
complex frequencies of the three modes; these comprise λ. (The
center frequencies of the other six Lorentzians are fixed by these
values and the frequencies of the intracavity beatnotes produced by
the control laser tones). Next, there is a complex constant background
and a transduction factor in each of the three windows. Lastly, there
are the nine complex amplitudes si,j of the Lorentzians (denoting the
amplitudeof the ith Lorentzian in thewindownear ~ωð0Þ

j ); however, only
four of the si,j are linearly independent. A detailed description of the
fitting procedure is in ref. 18.

The quantity D = ðλ1 � λ2Þ2ðλ2 � λ3Þ2ðλ3 � λ1Þ2 is calculated
directly from the value of λ returned by this fit. Figures 3a, 4a, and 5a,
all show measurements of argðDÞ.

To locate the degeneracies of H, we make use of D as well as the
quantity E � ðdetðSÞÞ�2 where S is the matrix whose elements are the
si,j. Both D and E are complex numbers. Both are expected to vanish at
an EP, and to exhibit a 2π phase winding around an EP. As a result, the
EPs within a given sheet were identified in four ways: by applying a
minimum-finding algorithm to both ∣D∣ and ∣E∣, and by applying a
vortex-finding algorithm to both argðDÞ and argðEÞ18. This procedure
was repeated for sixty-one distinct sheets, all lying in a hypersurface S,
and resulted in the identification of 291 degeneracies.

As described in ref. 18, S consists of eight 3D rectangular cuboids
("faces”). Each 3D face corresponds to fixing one of the four experi-
mental control parameters (δ, P1, P2, P3) to its minimum (or its max-
imum) value, and allowing the other three parameters to range from
their minimum to maximum values.

Figures 3b, c, 4b, c, and 5b, c, all show the same stereographic
projection from S to R3. The details of this projection are given in
ref. 18. These figures also show the experimentally determined EPs
within S. In ref. 18, all of the 291 EPs were displayed as individual points
(e.g., in Fig. 3 of that paper). For ease of visualization, in the present
paper we replace the points with a curve. This curve is a cubic spline
through the 67 degeneracies that were identified as vortices in argðDÞ.
Producing such a curve requires not only the locations of the points,
but also their ordering (i.e., it is necessary to knowwhich degeneracies
are “next to” each other along the knot). SinceK is a smooth curve, this
ordering could in principle be inferred directly from the locations of
the degeneracies (i.e., from their coordinates X, Y, Z). However, with a
finite number of experimentally determined degeneracies this
approach can lead to ambiguities, for example when distinct portions
of the curve K happen to pass close to each other. To remove this
potential ambiguity, we note that each degeneracy is also character-
ized by a parameter θ which runs from 0 to 2π around K. The formal
definition of θ is given in ref. 18, but here we note that θ is simply the
complex argument of the non-degenerate member of λ (when viewed

in a rotating frame inwhichH is traceless), and so is readily determined
from the data.

To place the experimentally identified degeneracies in order (i.e.,
as they appear around K), we define for the ith point the quantity
Ωi = ðXi,Y i,Zi, cos½θi�, sin½θi�Þ. Then for each point, we find the nearest
(and the next nearest) neighbor based on the Euclidean distance
between the various Ωi. Using this information, we sort the list of
degeneracies so that the nearest neighbors are the adjacent elements
of the list. We then interpolate the sorted list with a cubic spline.

Description of the three 2D control spaces
This section describes the three 2D control spaces used in the main
text. Each of these consists of the union of two or three of the “sheets”
described in the previous section (and in ref. 18).

The 2D control space shown in Fig. 3 (Bð1Þ) is the union of two
sheets. In the first, P3 and δ are fixed to 78μW and 2π × 60 kHz
respectively. In the second, P3 and δ are fixed to 78μW and
2π × 75.6 kHz, respectively. The 2D control space shown in Fig. 4 (Bð2Þ)
is the union of three sheets. The first two are the same as for Bð1Þ, and
the third consists of fixing P2 and δ to 289μW and 2π × 75.6 kHz,
respectively. The 2D control space shown in Fig. 5 (Bð3Þ) is the union of
two sheets: the latter sheet fromBð1Þ and the lattermost sheet fromBð2Þ.

The three sheets used to form Bð1Þ, Bð2Þ, and Bð3Þ are shown in
Supplementary Fig. 1. One of the views in Supplementary Fig. 1 uses the
same stereographic projection as in Figs. 3b, c, 4b, c, and 5b, c. The
other view uses the “rectilinear stereographic” projection described in
ref. 18. The latter provides easier interpretation in terms the experi-
mental parameters (δ, P1, P2, P3 ).

Device parameters
This section gives the values of the various parameters in the opto-
mechanicalmodel of the experimental three-mode system. Themodel
is described in detail in ref. 18. The values (presented in Table 1) are
determined by standard optomechanical characterization measure-
ments as described in refs. 18,43.

Scaling the experiment to larger N
In principle, the experimental approach described here can be exten-
ded to any number of modes. The membrane hosts many mechanical
modes that couple optomechanically to the cavity, and in general any
number N of these can be tuned in the manner used here. Specifically,
the N − 1 coefficients of the characteristic polynomial of these modes’
dynamical matrix can be varied over the complex plane via the
detuning and power of N laser tones. Roughly speaking, each tone is
detuned from the cavity resonance by an amount −ωn + δ, where ωn is
the frequency of the nth mechanical mode and δ is a single parameter
common to all of the tones. In this picture, the beatnote between any
two of these tones results in coupling between the corresponding
mechanical modes.

This specific approach to tuning a non-Hermitian system is gen-
eric to any situation in which the Nmodes all parametrically couple to
an auxiliary mode that can be driven externally. Tracing out this aux-
iliary mode from the equations of motion leaves an N-mode non-
Hermitian systemwhoseparameters aredeterminedby thedrive tones
applied to the auxiliarymode. In thework presented here, theNmodes
are the membrane’s mechanical modes and the auxiliary mode is the
optical cavity.

In practice, a number of issues may limit the maximum value of N
that can be tuned in this way. For example, if the ratio ωn/κ (where κ is
the cavity linewidth) is too small or too large, it becomes challenging to
tune thematrix elements ofHover a large regionof the complexplane.
In addition, complications arise if multiple mode pairs share the same
frequency difference, as this means that there is no simple corre-
spondence between the laser beatnotes and the mechanical modes
between which they induce coupling.
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Data availability
The data generated in this study have been deposited in the Zenodo
database under accession code https://zenodo.org/records/10451386.
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Supplementary Fig. 1. The sheets used to form the 2D control spaces shown in Figs. 3a, 4a, 5a.

Sheets 2○ and 3○ are joined to make B(1) in Fig. 3a. Sheets 1○, 2○ and 3○ are joined to make

B(2) in Fig. 4a. Sheets 1○ and 2○ are joined to make B(3) in Fig. 5a. a The three sheets, shown

in a rectilinear stereographic projection of the hypersurface S. b The same sheets, shown in the

stereographic projection used in Figs. 3(b,c), 4(b,c), 5(b,c).
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